enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infinitesimal - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal

    In common speech, an infinitesimal object is an object that is smaller than any feasible measurement, but not zero in size—or, so small that it cannot be distinguished from zero by any available means. Hence, when used as an adjective in mathematics, infinitesimal means infinitely small, smaller than any standard real number. Infinitesimals ...

  3. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus, it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function.

  4. Nonstandard calculus - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_calculus

    Example 1: a function f is uniformly continuous on the semi-open interval (0,1], if and only if its natural extension f* is microcontinuous (in the sense of the formula above) at every positive infinitesimal, in addition to continuity at the standard points of the interval.

  5. Increment theorem - Wikipedia

    en.wikipedia.org/wiki/Increment_theorem

    Then the same equation = ′ + holds with the same definition of Δy, but instead of ε being infinitesimal, we have = (treating x and f as given so that ε is a function of Δx alone). See also [ edit ]

  6. Nonstandard analysis - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_analysis

    A real-valued function f on the interval [a, b] is continuous if and only if for every hyperreal x in the interval *[a, b], we have: *f(x) ≅ *f(st(x)). Similarly, Theorem. A real-valued function f is differentiable at the real value x if and only if for every infinitesimal hyperreal number h, the value

  7. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.

  8. Infinitesimal strain theory - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_strain_theory

    In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness ...

  9. Deformation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(mathematics)

    The most salient deformation theory in mathematics has been that of complex manifolds and algebraic varieties.This was put on a firm basis by foundational work of Kunihiko Kodaira and Donald C. Spencer, after deformation techniques had received a great deal of more tentative application in the Italian school of algebraic geometry.