Search results
Results from the WOW.Com Content Network
The zero-point energy is inversely proportional to the square root of the mass of the vibrating hydrogen atom, and will therefore be smaller for a D–X bond that for an H–X bond. An example is a hydrogen atom abstraction reaction R' + H–R ⇌ R'–H + R with equilibrium constant K H , where R' and R are organic radicals such that R' forms ...
Knowing the analytical concentrations of reactants initially in the reaction vessel and in the burette, all analytical concentrations can be derived as a function of the volume (or mass) of titrant added. The equilibrium constants may be derived by best-fitting of the experimental data with a chemical model of the equilibrium system.
Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.
In reacting systems that include interphase mass transport, the first Damköhler number can be written as the ratio of the chemical reaction rate to the mass transfer rate D a I = reaction rate diffusive mass transfer rate {\displaystyle \mathrm {Da} _{\mathrm {I} }={\frac {\text{reaction rate}}{\text{diffusive mass transfer rate}}}}
In physical chemistry and chemical engineering, extent of reaction is a quantity that measures the extent to which the reaction has proceeded. Often, it refers specifically to the value of the extent of reaction when equilibrium has been reached.
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
Note that this is also the result of an extrapolation to zero scattering angle. By acquiring data on concentration and scattering intensity, the Debye plot is constructed by plotting Kc/ΔR(θ) vs. concentration. The intercept of the fitted line gives the molecular mass, while the slope corresponds to the 2nd virial coefficient.
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.