Search results
Results from the WOW.Com Content Network
Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...
Linear dynamical systems can be solved in terms of simple functions and the behavior of all orbits classified. In a linear system the phase space is the N -dimensional Euclidean space, so any point in phase space can be represented by a vector with N numbers.
This field of study is also called just dynamical systems, mathematical dynamical systems theory or the mathematical theory of dynamical systems. A chaotic solution of the Lorenz system, which is an example of a non-linear dynamical system. Studying the Lorenz system helped give rise to chaos theory.
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...
In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction or idealization, linear systems find important applications in automatic control theory, signal ...
Observability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs. In control theory, the observability and controllability of a linear system are mathematical duals. The concept of observability was introduced by the Hungarian-American engineer Rudolf E. Kálmán for linear dynamic systems.
This is a list of dynamical system and differential equation topics, by Wikipedia page. See also list of partial differential equation topics , list of equations . Dynamical systems, in general