Search results
Results from the WOW.Com Content Network
A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ). In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B.
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
Standard set theory symbols with their usual meanings (is a member of, equals, is a subset of, is a superset of, is a proper superset of, is a proper subset of, union, intersection, empty set) ∧ ∨ → ↔ ¬ ∀ ∃ Standard logical symbols with their usual meanings (and, or, implies, is equivalent to, not, for all, there exists) ≡
A set X is Dedekind-infinite if there exists a proper subset Y of X with |X| = |Y|, and Dedekind-finite if such a subset does not exist. The finite cardinals are just the natural numbers, in the sense that a set X is finite if and only if |X| = |n| = n for some natural number n. Any other set is infinite.
For example, {1, 2} is a subset of {1, 2, 3}, and so is {2} but {1, 4} is not. As implied by this definition, a set is a subset of itself. For cases where this possibility is unsuitable or would make sense to be rejected, the term proper subset is defined. A is called a proper subset of B if and only if A is a subset of B, but A is not equal to B.
For any subgroup of , the following conditions are equivalent to being a normal subgroup of .Therefore, any one of them may be taken as the definition. The image of conjugation of by any element of is a subset of , [4] i.e., for all .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The first shown partition contains five single-element subsets; the last partition contains one subset having five elements. The traditional Japanese symbols for the 54 chapters of the Tale of Genji are based on the 52 ways of partitioning five elements (the two red symbols represent the same partition, and the green symbol is added for ...