Search results
Results from the WOW.Com Content Network
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. The soil moisture curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability.
Field capacity is characterized by measuring water content after wetting a soil profile, covering it (to prevent evaporation), and monitoring the change soil moisture in the profile. A relatively low rate of change indicates when macropore drainage ceases, which is called Field Capacity; it is also termed drained upper limit (DUL).
Cooling capacity is the measure of a cooling system's ability to remove heat. [1] It is equivalent to the heat supplied to the evaporator/boiler part of the refrigeration cycle and may be called the "rate of refrigeration" or "refrigeration capacity".
Available water capacity is the amount of water that can be stored in a soil profile and be available for growing crops. [1] It is also known as available water content ( AWC ), profile available water ( PAW ) [ 2 ] or total available water ( TAW ).
Soil texture affects soil behaviour, in particular, its retention capacity for nutrients (e.g., cation exchange capacity) [8] and water. Sand and silt are the products of physical and chemical weathering of the parent rock ; [ 9 ] clay, on the other hand, is most often the product of the precipitation of the dissolved parent rock as a secondary ...
Apart from the basic soil composition, which is constant at one location, soil thermal properties are strongly influenced by the soil volumetric water content, volume fraction of solids and volume fraction of air. Air is a poor thermal conductor and reduces the effectiveness of the solid and liquid phases to conduct heat.
Summary of hydrologic and physical properties of rock and soil materials as analyzed by the Hydrologic Laboratory of the U.S. Geological Survey 1948-1960. U.S. Geological Survey Water Supply Paper 1839-D. 42 p. De Wiest, R. J. (1966). On the storage coefficient and the equations of groundwater flow.
The available volume for additional water in the soil depends on the porosity of the soil [7] and the rate at which previously infiltrated water can move away from the surface through the soil. The maximum rate at that water can enter soil in a given condition is the infiltration capacity.