Search results
Results from the WOW.Com Content Network
Peptidoglycan recognition is an evolutionarily conserved process. [25] The overall structure is similar between bacterial species, but various modifications can increase the diversity. These include modifications of the length of sugar polymers, modifications in the sugar structures, variations in cross-linking or substitutions of amino acids ...
It is a glycoside hydrolase that catalyzes the following process: Hydrolysis of (1→4)-β-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrins. Peptidoglycan is the major component of gram-positive bacterial cell wall. [1]
Double-stranded DNA phage lysins tend to lie within the 25 to 40 kDa range in terms of size. A notable exception is the streptococcal PlyC endolysin, which is 114 kDa. PlyC is not only the biggest and most potent lysin, but also structurally unique since it is composed of two different gene products, PlyCA and PlyCB, with a ratio of eight PlyCB subunits for each PlyCA in its active conformation.
This layered structure is called peptidoglycan (formerly called murein). GlcNAc is the monomeric unit of the polymer chitin, which forms the exoskeletons of arthropods like insects and crustaceans. It is the main component of the radulas of mollusks, the beaks of cephalopods, and a major component of the cell walls of most fungi.
Since bacterial cell walls do not contain chitin, OBPgp279 hydrolyzes β-1,4-linked GlcNAc in peptidoglycan. [2] The hydrolysis of β-1,4-linked GlcNAc is catalyzed by two glutamate residues in the active side, one acting as a general acid, and another acting as a general base. [6] There is limited detail on the catalytic mechanism of OBPgp279.
Hydrolysis of peptidoglycan by PGLYRP2 diminishes peptidoglycan's pro-inflammatory activity. [ 31 ] [ 41 ] This effect is likely due to amidase activity of PGLYRP2, which separates the stem peptide from MurNAc in peptidoglycan and destroys the motif required for the peptidoglycan-induced activation of NOD2 (nucleotide-binding oligomerization ...
Autolysins breaks down old peptidoglycan which allows for the formation of newer peptidoglycan for cell growth and elongation. This is called cell wall turnover. [ 6 ] Autolysins do this by hydrolyzing the β-(1,4) glycosidic bond of the peptidoglycan cell wall and the linkage between N-acetylmuramoyl residues and L-amino acid residues of ...
Many of these proteins are uncharacterised, but it has been proposed that they may function mainly in peptidoglycan hydrolysis. The CHAP domain is found in a wide range of protein architectures; it is commonly associated with bacterial type SH3 domains and with several families of amidase domains.