Search results
Results from the WOW.Com Content Network
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.
The direct product for modules (not to be confused with the tensor product) is very similar to the one defined for groups above, using the Cartesian product with the operation of addition being componentwise, and the scalar multiplication just distributing over all the components.
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
The direct product of two groups N and H can be thought of as the semidirect product of N and H with respect to φ(h) = id N for all h in H. Note that in a direct product, the order of the factors is not important, since N × H is isomorphic to H × N. This is not the case for semidirect products, as the two factors play different roles.
For an arbitrary family of groups indexed by , their direct sum [2] is the subgroup of the direct product that consists of the elements () that have finite support, where by definition, () is said to have finite support if is the identity element of for all but finitely many . [3] The direct sum of an infinite family () of non-trivial groups is ...
As with the direct and semidirect products, there is an external version of the Zappa–Szép product for groups which are not known a priori to be subgroups of a given group. To motivate this, let G = HK be an internal Zappa–Szép product of subgroups H and K of the group G.
The category-theoretical product in Grp is just the direct product of groups while the category-theoretical coproduct in Grp is the free product of groups. The zero objects in Grp are the trivial groups (consisting of just an identity element).
In mathematics, a product of groups usually refers to a direct product of groups, but may also mean: semidirect product; Product of group subsets;