Search results
Results from the WOW.Com Content Network
In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...
In fluid mechanics, Helmholtz's theorems, named after Hermann von Helmholtz, describe the three-dimensional motion of fluid in the vicinity of vortex lines. These theorems apply to inviscid flows and flows where the influence of viscous forces are small and can be ignored. Helmholtz's three theorems are as follows: [1] Helmholtz's first theorem
In fluid mechanics, Kelvin's circulation theorem states: [1] [2] In a barotropic, ideal fluid with conservative body forces, the circulation around a closed curve (which encloses the same fluid elements) moving with the fluid remains constant with time. The theorem is named after William Thomson, 1st Baron Kelvin who published it in 1869.
Take the simple example of a barotropic, inviscid vorticity-free fluid.. Then, the conjugate fields are the mass density field ρ and the velocity potential φ.The Poisson bracket is given by
The condition can be expressed in a number of ways. One is that there cannot be an infinite change in velocity at the trailing edge. Although an inviscid fluid can have abrupt changes in velocity, in reality viscosity smooths out sharp velocity changes. If the trailing edge has a non-zero angle, the flow velocity there must be zero.
Unlike an ideal inviscid fluid, a viscous flow past a cylinder, no matter how small the viscosity, will acquire a thin boundary layer adjacent to the surface of the cylinder. Boundary layer separation will occur, and a trailing wake will exist in the flow behind the cylinder. The pressure at each point on the wake side of the cylinder will be ...
The flow will curve around the imaginary cylinders just like the real due to the Taylor–Proudman theorem, which states that the flow in a rotating, homogeneous, inviscid fluid are 2-dimensional in the plane orthogonal to the rotation axis and thus there is no variation in the flow along the axis, often taken to be the ^ axis.
Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...