Search results
Results from the WOW.Com Content Network
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
The names for the degrees may be applied to the polynomial or to its terms. For example, the term 2x in x 2 + 2x + 1 is a linear term in a quadratic polynomial. The polynomial 0, which may be considered to have no terms at all, is called the zero polynomial. Unlike other constant polynomials, its degree is not zero.
Then, f(x)g(x) = 4x 2 + 4x + 1 = 1. Thus deg( f ⋅ g ) = 0 which is not greater than the degrees of f and g (which each had degree 1). Since the norm function is not defined for the zero element of the ring, we consider the degree of the polynomial f ( x ) = 0 to also be undefined so that it follows the rules of a norm in a Euclidean domain.
An integral quadratic form has integer coefficients, such as x 2 + xy + y 2; equivalently, given a lattice Λ in a vector space V (over a field with characteristic 0, such as Q or R), a quadratic form Q is integral with respect to Λ if and only if it is integer-valued on Λ, meaning Q(x, y) ∈ Z if x, y ∈ Λ.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
However, the square of the distance (denoted d 2 or r 2), which has a paraboloid as its graph, is a smooth and analytic function. The dot product of a Euclidean vector with itself is equal to the square of its length: v⋅v = v 2. This is further generalised to quadratic forms in linear spaces via the inner product.