Search results
Results from the WOW.Com Content Network
For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
The free spectral range of a diffraction grating is the largest wavelength range for a given order that does not overlap the same range in an adjacent order. If the ( m + 1)-th order of λ {\displaystyle \lambda } and m -th order of ( λ + Δ λ ) {\displaystyle (\lambda +\Delta \lambda )} lie at the same angle, then
3.4 cm – length of a quail egg [113] 3.5 cm – width of film commonly used in motion pictures and still photography; 3.78 cm – amount of distance the Moon moves away from Earth each year [114] 4.3 cm – minimum diameter of a golf ball [115] 5 cm – usual diameter of a chicken egg; 5 cm – height of a hummingbird, the smallest-known bird
The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.
Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr −1 ⋅m −2 ⋅nm −1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity". L e,Ω,λ [nb 4] watt per steradian per square metre, per metre W⋅sr −1 ⋅m −3: M⋅L −1 ⋅T −3: Irradiance Flux ...
The effective wavelength (spectral) range of a spectrometer is determined not only by the grating dispersion ability but also depends on the detectors' sensitivity range. Limited by the semiconductor's band gap the silicon-based detector responds to 200-1100 nm while the InGaAs based detector is sensitive to 900-1700 nm (or out to 2500 nm with ...