Search results
Results from the WOW.Com Content Network
A single impedance has two terminals to connect to the outside world, hence can be described as a 2-terminal, or a one-port, network.Despite the simple description, there is no limit to the number of meshes, [note 6] and hence complexity and number of elements, that the impedance network may have.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
To maximise power transmission [clarification needed] for radio frequency power systems the circuits should be complex conjugate matched throughout the power chain, from the transmitter output, through the transmission line (a balanced pair, a coaxial cable, or a waveguide), to the antenna system, which consists of an impedance matching device ...
The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...
For a one-port network, the Z-matrix reduces to a single element, being the ordinary impedance measured between the two terminals. The Z-parameters are also known as the open circuit parameters because they are measured or calculated by applying current to one port and determining the resulting voltages at all the ports while the undriven ports ...
For a two-terminal component (i.e. one-port component), the current and voltage are taken as the input and output and the transfer function will have units of impedance or admittance (it is usually a matter of arbitrary convenience whether voltage or current is considered the input).
This is equivalent to calculating the Thevenin resistance. When there are dependent sources, the more general method must be used. The voltage at the terminals is calculated for an injection of a 1 ampere test current at the terminals. This voltage divided by the 1 A current is the Norton impedance R no (in ohms). This method must be used if ...
Reducing the output impedance of power pentodes (such as the EL34) in a common-cathode configuration. The impedance of the loudspeaker on the secondary coil of the transformer will be transformed to a higher impedance on the primary coil in the circuit of the power pentodes by the square of the turns ratio, which forms the impedance scaling factor.