Search results
Results from the WOW.Com Content Network
GraphBLAS (/ ˈ ɡ r æ f ˌ b l ɑː z / ⓘ) is an API specification that defines standard building blocks for graph algorithms in the language of linear algebra. [1] [2] GraphBLAS is built upon the notion that a sparse matrix can be used to represent graphs as either an adjacency matrix or an incidence matrix.
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.
For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures. This list of terms was originally derived from the index of that document, and is in the public domain, as it was compiled by a Federal Government employee as part of a Federal Government work. Some of the terms defined are:
Laplacian matrix — a matrix equal to the degree matrix minus the adjacency matrix for a graph, used to find the number of spanning trees in the graph. Seidel adjacency matrix — a matrix similar to the usual adjacency matrix but with −1 for adjacency; +1 for nonadjacency; 0 on the diagonal. Skew-adjacency matrix — an adjacency matrix in ...
In mathematics, in graph theory, the Seidel adjacency matrix of a simple undirected graph G is a symmetric matrix with a row and column for each vertex, having 0 on the diagonal, −1 for positions whose rows and columns correspond to adjacent vertices, and +1 for positions corresponding to non-adjacent vertices.
More generally, a matroid is called graphic whenever it is isomorphic to the graphic matroid of a graph, regardless of whether its elements are themselves edges in a graph. [ 2 ] The bases of a graphic matroid M ( G ) {\displaystyle M(G)} are the full spanning forests of G {\displaystyle G} , and the circuits of M ( G ) {\displaystyle M(G)} are ...
In graph theory, the Tutte matrix A of a graph G = (V, E) is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. If the set of vertices is V = { 1 , 2 , … , n } {\displaystyle V=\{1,2,\dots ,n\}} then the Tutte matrix is an n -by- n matrix A with entries
In algebraic graph theory, the adjacency algebra of a graph G is the algebra of polynomials in the adjacency matrix A(G) of the graph. It is an example of a matrix algebra and is the set of the linear combinations of powers of A. [1] Some other similar mathematical objects are also called "adjacency algebra".