Search results
Results from the WOW.Com Content Network
Sirtuin 4, also known as SIRT4, is a mitochondrial protein which in humans is encoded by the SIRT4 gene. [5] [6] SIRT4 is member of the mammalian sirtuin family of proteins, which are homologs to the yeast Sir2 protein. SIRT4 exhibits NAD+-dependent deacetylase activity.
A string of characters drawn from the alphabet and enclosed in braces (curly brackets) denotes any amino acid except for those in the string. For example, {ST} denotes any amino acid other than S or T. If a pattern is restricted to the N-terminal of a sequence, the pattern is prefixed with '<'. If a pattern is restricted to the C-terminal of a ...
A sequence begins with a greater-than character (">") followed by a description of the sequence (all in a single line). The lines immediately following the description line are the sequence representation, with one letter per amino acid or nucleic acid, and are typically no more than 80 characters in length. For example:
A consensus logo is a simplified variation of a sequence logo that can be embedded in text format. Like a sequence logo, a consensus logo is created from a collection of aligned protein or DNA/RNA sequences and conveys information about the conservation of each position of a sequence motif or sequence alignment [1] [4].
Protein sequence is typically notated as a string of letters, listing the amino acids starting at the amino-terminal end through to the carboxyl-terminal end. Either a three letter code or single letter code can be used to represent the 22 naturally encoded amino acids, as well as mixtures or ambiguous amino acids (similar to nucleic acid ...
Stop codon (red dot) of the human mitochondrial DNA MT-ATP8 gene, and start codon (blue circle) of the MT-ATP6 gene. For each nucleotide triplet (square brackets), the corresponding amino acid is given (one-letter code), either in the +1 reading frame for MT-ATP8 (in red) or in the +3 frame for MT-ATP6 (in blue).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Chou–Fasman method takes into account only the probability that each individual amino acid will appear in a helix, strand, or turn. Unlike the more complex GOR method, it does not reflect the conditional probabilities of an amino acid to form a particular secondary structure given that its neighbors already possess that structure. This ...