enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .

  3. Shunting yard algorithm - Wikipedia

    en.wikipedia.org/wiki/Shunting_yard_algorithm

    To convert, the program reads each symbol in order and does something based on that symbol. The result for the above examples would be (in reverse Polish notation) "3 4 +" and "3 4 2 1 − × +", respectively. The shunting yard algorithm will correctly parse all valid infix expressions, but does not reject all invalid expressions.

  4. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  5. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    Most of the mathematical functions are defined in <math.h> (<cmath> header in C++). The functions that operate on integers, such as abs, labs, div, and ldiv, are instead defined in the <stdlib.h> header (<cstdlib> header in C++). Any functions that operate on angles use radians as the unit of angle. [1]

  6. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    Exponentiation and primality testing are primitive recursive. Given primitive recursive functions e {\displaystyle e} , f {\displaystyle f} , g {\displaystyle g} , and h {\displaystyle h} , a function that returns the value of g {\displaystyle g} when e ≤ f {\displaystyle e\leq f} and the value of h {\displaystyle h} otherwise is primitive ...

  7. Hyperoperation - Wikipedia

    en.wikipedia.org/wiki/Hyperoperation

    The parameters of the hyperoperation hierarchy are sometimes referred to by their analogous exponentiation term; [15] so a is the base, b is the exponent (or hyperexponent), [12] and n is the rank (or grade), [6] and moreover, (,) is read as "the bth n-ation of a", e.g. (,) is read as "the 9th tetration of 7", and (,) is read as "the 789th 123 ...

  8. Elliptic curve point multiplication - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_point...

    The simplest method is the double-and-add method, [3] similar to square-and-multiply in modular exponentiation. The algorithm works as follows: The algorithm works as follows: To compute sP , start with the binary representation for s : ⁠ s = s 0 + 2 s 1 + 2 2 s 2 + ⋯ + 2 n − 1 s n − 1 {\displaystyle s=s_{0}+2s_{1}+2^{2}s_{2}+\cdots +2 ...

  9. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]