Search results
Results from the WOW.Com Content Network
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
However, when exponentiation is represented by an explicit symbol such as a caret (^) or arrow (↑), there is no common standard. For example, Microsoft Excel and computation programming language MATLAB evaluate a^b^c as (a b) c, but Google Search and Wolfram Alpha as a (b c). Thus 4^3^2 is evaluated to 4,096 in the first case and to 262,144 ...
The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...
In computer science, the shunting yard algorithm is a method for parsing arithmetical or logical expressions, or a combination of both, specified in infix notation.It can produce either a postfix notation string, also known as reverse Polish notation (RPN), or an abstract syntax tree (AST). [1]
GNU Multiple Precision Arithmetic Library (GMP) is a free library for arbitrary-precision arithmetic, operating on signed integers, rational numbers, and floating-point numbers. [3] There are no practical limits to the precision except the ones implied by the available memory (operands may be of up to 2 32 −1 bits on 32-bit machines and 2 37 ...
The modular inverse of aR mod N is REDC((aR mod N) −1 (R 3 mod N)). Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies.
The type-generic macros that correspond to a function that is defined for only real numbers encapsulates a total of 3 different functions: float, double and long double variants of the function. The C++ language includes native support for function overloading and thus does not provide the <tgmath.h> header even as a compatibility feature.
Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation. These can be of quite general use, for example in modular arithmetic or powering of matrices. For semigroups for which additive notation is commonly used, like elliptic curves used in cryptography , this method is also referred to as double-and-add .