Search results
Results from the WOW.Com Content Network
The troposphere is the lowest layer of Earth's atmosphere. It extends from Earth's surface to an average height of about 12 km (7.5 mi; 39,000 ft), although this altitude varies from about 9 km (5.6 mi; 30,000 ft) at the geographic poles to 17 km (11 mi; 56,000 ft) at the Equator, [22] with some variation due
The Earth's atmosphere, hydrosphere, and biosphere together hold less than 0.05% of the Earth's total mass of oxygen. Besides O 2, additional oxygen atoms are present in various forms spread throughout the surface reservoirs in the molecules of biomass, H 2 O, CO 2, HNO 3, NO, NO 2, CO, H 2 O 2, O 3, SO 2, H 2 SO 4, MgO, CaO, Al2O3, SiO 2, and ...
Oxygen evolution is the chemical process of generating elemental diatomic oxygen (O 2) by a chemical reaction, usually from water, the most abundant oxide compound in the universe. Oxygen evolution on Earth is effected by biotic oxygenic photosynthesis, photodissociation, hydroelectrolysis, and thermal decomposition of various oxides and oxyacids.
Photosynthetic prokaryotic organisms that produced O 2 as a byproduct lived long before the first build-up of free oxygen in the atmosphere, [5] perhaps as early as 3.5 billion years ago. The oxygen cyanobacteria produced would have been rapidly removed from the oceans by weathering of reducing minerals, [citation needed] most notably ferrous ...
The common allotrope of elemental oxygen on Earth is called dioxygen, O 2, the major part of the Earth's atmospheric oxygen (see Occurrence). O 2 has a bond length of 121 pm and a bond energy of 498 kJ/mol. [42] O 2 is used by complex forms of life, such as animals, in cellular respiration. Other aspects of O
The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, Oxygen Crisis or Oxygen Holocaust, [2] was a time interval during the Earth's Paleoproterozoic era when the Earth's atmosphere and shallow seas first experienced a rise in the concentration of free oxygen. [3]
The ozone–oxygen cycle is the process by which ozone is continually regenerated in Earth's stratosphere, converting ultraviolet radiation (UV) into heat. In 1930 Sydney Chapman resolved the chemistry involved. The process is commonly called the Chapman cycle by atmospheric scientists.
The composition of Earth's atmosphere is determined by the by-products of the life that it sustains. Dry air (mixture of gases) from Earth's atmosphere contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and traces of hydrogen, helium, and other "noble" gases (by volume), but generally a variable amount of water vapor is ...