Search results
Results from the WOW.Com Content Network
Cell damage (also known as cell injury) is a variety of changes of stress that a cell suffers due to external as well as internal environmental changes. Amongst other causes, this can be due to physical, chemical, infectious, biological, nutritional or immunological factors.
Examples include the injection of stem cells or progenitor cells obtained through directed differentiation (cell therapies); the induction of regeneration by biologically active molecules administered alone or as a secretion by infused cells (immunomodulation therapy); and transplantation of in vitro grown organs and tissues (tissue engineering).
Sunflower sea star regenerates its arms. Dwarf yellow-headed gecko with regenerating tail. Regeneration in biology is the process of renewal, restoration, and tissue growth that makes genomes, cells, organisms, and ecosystems resilient to natural fluctuations or events that cause disturbance or damage. [1]
Neuroregeneration is the regrowth or repair of nervous tissues, cells or cell products. Neuroregenerative mechanisms may include generation of new neurons , glia , axons , myelin , or synapses . Neuroregeneration differs between the peripheral nervous system (PNS) and the central nervous system (CNS) by the functional mechanisms involved ...
Healing must happen by repair in the case of injury to cells that are unable to regenerate (e.g. neurons). Also, damage to the collagen network (e.g. by enzymes or physical destruction), or its total collapse (as can happen in an infarct ) cause healing to take place by repair.
Therefore, a potential source of cells for lung regeneration has been found; however, due to advances in inducing stem cells and directing their differentiation, major progress in lung regeneration has consistently featured the use of patient-derived iPSCs and bioscaffolds. The extracellular matrix is the key to generating entire organs in vitro.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
These cells are considered to be terminally differentiated and non-proliferative in postnatal life. This includes neurons , heart cells , skeletal muscle cells [ 1 ] and red blood cells . [ 2 ] Although these cells are considered permanent in that they neither reproduce nor transform into other cells, this does not mean that the body cannot ...