Search results
Results from the WOW.Com Content Network
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
Python has built-in set and frozenset types since 2.4, and since Python 3.0 and 2.7, supports non-empty set literals using a curly-bracket syntax, e.g.: {x, y, z}; empty sets must be created using set(), because Python uses {} to represent the empty dictionary.
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
This definition of disjoint sets can be extended to families of sets and to indexed families of sets. By definition, a collection of sets is called a family of sets (such as the power set, for example). In some sources this is a set of sets, while other sources allow it to be a multiset of sets, with some sets repeated.
The intersection is the meet/infimum of and with respect to because: if L ∩ R ⊆ L {\displaystyle L\cap R\subseteq L} and L ∩ R ⊆ R , {\displaystyle L\cap R\subseteq R,} and if Z {\displaystyle Z} is a set such that Z ⊆ L {\displaystyle Z\subseteq L} and Z ⊆ R {\displaystyle Z\subseteq R} then Z ⊆ L ∩ R . {\displaystyle Z ...
Consequently, assuming intersection and symmetric difference as primitive operations, the union of two sets can be well defined in terms of symmetric difference by the right-hand side of the equality = (). The symmetric difference is commutative and associative:
An intersection of a type family, denoted :, is a dependent type in which the type may depend on the term variable . In particular, if a term M {\displaystyle M} has the type ⋂ x : σ τ {\textstyle \bigcap _{x:\sigma }\tau } , then for each term N {\displaystyle N} of type σ {\displaystyle \sigma } , the term M {\displaystyle M} has the ...
An example of how intersecting sets define a graph. In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets.Any graph can be represented as an intersection graph, but some important special classes of graphs can be defined by the types of sets that are used to form an intersection representation of them.