Search results
Results from the WOW.Com Content Network
After the Ziehl-Neelsen staining procedure using carbol fuchsin, acid-fast bacteria are observable as vivid red or pink rods set against a blue or green background, depending on the specific counterstain used, such as methylene blue or malachite green, respectively. Non-acid-fast bacteria and other cellular structures will be colored by the ...
Ziehl–Neelsen stain (classic and modified bleach types) [5]; Kinyoun stain; For color blind people (or in backgrounds where detecting red bacteria is difficult), Victoria blue can be substituted for carbol fuchsin and picric acid can be used as the counter stain instead of methylene blue, and the rest of the Kinyoun technique can be used.
The Kinyoun method can be modified as a weak acid fast stain, which uses 0.5–1.0% sulfuric acid instead of hydrochloric acid.The weak acid fast stain, in addition to staining Mycobacteria, will also stain organisms that are not able to maintain the carbol fuchsin after decolorizing with HCl, such as Nocardia species and Cryptosporidium.
English: This is a diagram of the basic steps of a Ziehl-Neelsen (Acid Fast) staining procedure File:Basic steps of acid fast staining procedure.svg is a vector version of this file. It should be used in place of this PDF file when not inferior.
A Ziehl–Neelsen stain is an acid-fast stain used to stain species of Mycobacterium tuberculosis that do not stain with the standard laboratory staining procedures such as Gram staining. This stain is performed through the use of both red coloured carbol fuchsin that stains the bacteria and a counter stain such as methylene blue.
[2] [3] Carbol fuchsin is used as the primary stain dye to detect acid-fast bacteria because it is more soluble in the cells' wall lipids than in the acid alcohol. If the bacteria is acid-fast the bacteria will retain the initial red color of the dye because they are able to resist the destaining by acid alcohol (0.4–1% HCl in 70% EtOH). [4 ...
Gram stain (Gram staining or Gram's method), is a method of staining used to classify bacterial species into two large groups: gram-positive bacteria and gram-negative bacteria. It may also be used to diagnose a fungal infection. [1] The name comes from the Danish bacteriologist Hans Christian Gram, who developed the technique in 1884. [2]
One commonly recognizable use of differential staining is the Gram stain. Gram staining uses two dyes: Crystal violet and Fuchsin or Safranin (the counterstain) to differentiate between Gram-positive bacteria (large Peptidoglycan layer on outer surface of cell) and Gram-negative bacteria. Acid-fast stains are also differential stains.