Search results
Results from the WOW.Com Content Network
Heteroskedasticity-consistent standard errors are used to allow the fitting of a model that does contain heteroskedastic residuals. The first such approach was proposed by Huber (1967), and further improved procedures have been produced since for cross-sectional data, time-series data and GARCH estimation.
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance.
White test is a statistical test that establishes whether the variance of the errors in a regression model is constant: that is for homoskedasticity. This test, and an estimator for heteroscedasticity-consistent standard errors , were proposed by Halbert White in 1980. [ 1 ]
A Newey–West estimator is used in statistics and econometrics to provide an estimate of the covariance matrix of the parameters of a regression-type model where the standard assumptions of regression analysis do not apply. [1] It was devised by Whitney K. Newey and Kenneth D. West in 1987, although there are a number of later variants.
Since the drift term =, the ZD-GARCH model is always non-stationary, and its statistical inference methods are quite different from those for the classical GARCH model. Based on the historical data, the parameters α 1 {\displaystyle ~\alpha _{1}} and β 1 {\displaystyle ~\beta _{1}} can be estimated by the generalized QMLE method.
The Heckman correction is a statistical technique to correct bias from non-randomly selected samples or otherwise incidentally truncated dependent variables, a pervasive issue in quantitative social sciences when using observational data. [1]
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance ...
If the test statistic has a p-value below an appropriate threshold (e.g. p < 0.05) then the null hypothesis of homoskedasticity is rejected and heteroskedasticity assumed. If the Breusch–Pagan test shows that there is conditional heteroskedasticity, one could either use weighted least squares (if the source of heteroskedasticity is known) or ...