Search results
Results from the WOW.Com Content Network
For a given set S of integers find the minimal number of nonoverlapping arithmetic progressions that cover S; Find the number of ways to partition {1, ..., n} into arithmetic progressions. [8] Find the number of ways to partition {1, ..., n} into arithmetic progressions of length at least 2 with the same period. [9] See also Covering system
Tripuri Nationalism is an ideology that supports self-determination by the Tripuri people. [1] The conflict is in essence ethnic and the Tripuri community, indigenous to the region formed the clear majority of population in the princely state of Tippera, which joined the Republic of India in 1949 as the state of Tripura.
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...
Because the sum of the reciprocals of the primes diverges, the Green–Tao theorem on arithmetic progressions is a special case of the conjecture. The weaker claim that A must contain infinitely many arithmetic progressions of length 3 is a consequence of an improved bound in Roth's theorem. A 2016 paper by Bloom [4] proved that if {,..
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer.
For example, the sequence,,,,, … is not an arithmetic progression, but is instead generated by starting with 17 and adding either 3 or 5, thus allowing multiple common differences to generate it. A semilinear set generalizes this idea to multiple dimensions – it is a set of vectors of integers, rather than a set of integers.
Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...
Each residue class is an arithmetic progression, and thus clopen. Consider the multiples of each prime. These multiples are a residue class (so closed), and the union of these sets is all (Golomb: positive) integers except the units ±1. If there are finitely many primes, that union is a closed set, and so its complement ({±1}) is open.