Search results
Results from the WOW.Com Content Network
In practice, fish anatomy and fish physiology complement each other, the former dealing with the structure of a fish, its organs or component parts and how they are put together, such as might be observed on the dissecting table or under the microscope, and the latter dealing with how those components function together in living fish.
Win a tournament to collect the Quiz Winner userbox! Welcome to the Fish Quiz! This is a friendly quiz competition designed to test your general knowledge of fish. Any registered Wikipedians may answer this quiz's questions, but, only if you get them right may you post another one. Think of this quiz as a fun, interactive version of "Did you ...
In practice, fish anatomy and physiology complement each other, the former dealing with the structure of a fish, its organs or component parts and how they are put together, such as might be observed on the dissecting table or under the microscope, and the latter dealing with how those components function together in the living fish.
These fish use their electric discharges for navigation, communication, mating, defence, and in strongly electric fish also for the incapacitation of prey. The electric organs of two strongly electric fish, the torpedo ray and the electric eel were first studied in the 1770s by John Walsh , Hugh Williamson, and John Hunter .
Cuttlebone, also known as cuttlefish bone, is a hard, brittle internal structure (an internal shell) found in all members of the family Sepiidae, commonly known as cuttlefish, within the cephalopods. In other cephalopod families it is called a gladius. Cuttlebone is composed primarily of aragonite.
The gill arches of bony fish typically have no septum, so that the gills alone project from the arch, supported by individual gill rays. Some species retain gill rakers. Though all but the most primitive bony fish lack a spiracle, the pseudobranch associated with it often remains, being located at the base of the operculum. This is, however ...
The anterior or front of the shell is where the byssus and foot are located (if the animal has these structures) and the posterior or back of the shell is where the siphon is located (again, if present— the scallops, for example, do not have siphons). Without being able to view these organs, however, determining anterior and posterior can be ...
The structure and spacing of gill rakers in fish determines the size of food particles trapped, and correlates with feeding behavior. Fish with densely spaced, elongated, comb-like gill rakers are efficient at filtering tiny prey, whereas carnivores and omnivores often have more widely spaced gill rakers with secondary projections.