Search results
Results from the WOW.Com Content Network
Pinocytosis. In cellular biology, pinocytosis, otherwise known as fluid endocytosis and bulk-phase pinocytosis, is a mode of endocytosis in which small molecules dissolved in extracellular fluid are brought into the cell through an invagination of the cell membrane, resulting in their containment within a small vesicle inside the cell.
The destruction of microvilli can actually be beneficial sometimes, as in the case of elimination of microvilli on white blood cells which can be used to combat auto immune diseases. [ 6 ] Congenital lack of microvilli in the intestinal tract causes microvillus atrophy , a rare, usually fatal condition found in new-born babies.
The vesicle then travels into the cytosol and fuses with other vesicles such as endosomes and lysosomes. [ 9 ] Phagocytosis is the process by which cells bind and internalize particulate matter larger than around 0.75 μm in diameter, such as small-sized dust particles, cell debris, microorganisms and apoptotic cells.
It also serves to regulate blood flow and tissue perfusion, thereby affecting blood pressure and responses to inflammation which can include edema (swelling). Most vessels of the microcirculation are lined by flattened cells of the endothelium and many of them are surrounded by contractile cells called pericytes. The endothelium provides a ...
Tumor-associated microvesicles are abundant in the blood, urine, and other body fluids of patients with cancer, and are likely involved in tumor progression. They offer a unique opportunity to noninvasively access the wealth of biological information related to their cells of origin.
Kupffer cells are amoeboid in character, with surface features including microvilli, pseudopodia and lamellipodia, which project in every direction. The microvilli and pseudopodia play a role in the endocytosis of particles. The nucleus is indented and ovoid, and can be lobulated.
Differences in vascular permeability between normal tissue and a tumor. Vascular permeability, often in the form of capillary permeability or microvascular permeability, characterizes the capacity of a blood vessel wall to allow for the flow of small molecules (drugs, nutrients, water, ions) or even whole cells (lymphocytes on their way to the site of inflammation) in and out of the vessel.
In a study involving adult pericyte-deficient mice, cerebral blood flow was diminished with concurrent vascular regression due to loss of both endothelia and pericytes. Significantly greater hypoxia was reported in the hippocampus of pericyte-deficient mice as well as inflammation, and learning and memory impairment.