enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  3. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In the same way that the double factorial generalizes the notion of the single factorial, the following definition of the integer-valued multiple factorial functions (multifactorials), or α-factorial functions, extends the notion of the double factorial function for positive integers : ! = {()!

  4. Multiple factor analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_factor_analysis

    The core of MFA is a weighted factorial analysis: MFA firstly provides the classical results of the factorial analyses. 1. Representations of individuals in which two individuals are close to each other if they exhibit similar values for many variables in the different variable groups; in practice the user particularly studies the first ...

  5. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers. constants: Limit = 1000 % Sufficient digits.

  6. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    General purpose numerical analysis library with C++, C#, Python, FreePascal interfaces. Armadillo [2] [3] NICTA: C++ 2009 12.6.6 / 10.2023 Free Apache License 2.0: C++ template library for linear algebra; includes various decompositions and factorisations; syntax is similar to MATLAB. ATLAS: R. Clint Whaley et al. C 2001 3.10.3 / 07.2016 Free BSD

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − 47⋅17 = 1, so R′ = 8. Multiply 12 by 8 to get 96 and reduce modulo 17 to get 11. This is the Montgomery form of 3, as expected.

  8. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    Multiplication in a finite field is multiplication modulo an irreducible reducing polynomial used to define the finite field. (I.e., it is multiplication followed by division using the reducing polynomial as the divisor—the remainder is the product.) The symbol "•" may be used to denote multiplication in a finite field.

  9. APL syntax and symbols - Wikipedia

    en.wikipedia.org/wiki/APL_syntax_and_symbols

    In the above case, the reduce or slash operator moderates the multiply function. The expression ×/2 3 4 evaluates to a scalar (1 element only) result through reducing an array by multiplication. The above case is simplified, imagine multiplying (adding, subtracting or dividing) more than just a few numbers together.