enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mycielskian - Wikipedia

    en.wikipedia.org/wiki/Mycielskian

    Applying the Mycielskian repeatedly, starting with the one-edge graph, produces a sequence of graphs M i = μ(M i−1), sometimes called the Mycielski graphs. The first few graphs in this sequence are the graph M 2 = K 2 with two vertices connected by an edge, the cycle graph M 3 = C 5 , and the Grötzsch graph M 4 with 11 vertices and 20 edges.

  3. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  4. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    The graph of a function on its own does not determine the codomain. It is common [3] to use both terms function and graph of a function since even if considered the same object, they indicate viewing it from a different perspective. Graph of the function () = over the interval [2,+3]. Also shown are the two real roots and the local minimum ...

  5. Graph factorization - Wikipedia

    en.wikipedia.org/wiki/Graph_factorization

    If k is sufficiently large, it is known that G has to be 1-factorable: If k = 2n 1, then G is the complete graph K 2n, and hence 1-factorable (see above). If k = 2n 2, then G can be constructed by removing a perfect matching from K 2n. Again, G is 1-factorable. Chetwynd & Hilton (1985) show that if k ≥ 12n/7, then G is 1-factorable.

  6. Unit distance graph - Wikipedia

    en.wikipedia.org/wiki/Unit_distance_graph

    An abstract graph is said to be a unit distance graph if it is possible to find distinct locations in the plane for its vertices, so that its edges have unit length and so that all non-adjacent pairs of vertices have non-unit distances. When this is possible, the abstract graph is isomorphic to the unit distance graph of the chosen locations ...

  7. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    To decide if a graph has a Hamiltonian path, one would have to check each possible path in the input graph G. There are n! different sequences of vertices that might be Hamiltonian paths in a given n-vertex graph (and are, in a complete graph), so a brute force search algorithm that tests all possible sequences would be very slow.

  8. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  9. Brooks' theorem - Wikipedia

    en.wikipedia.org/wiki/Brooks'_theorem

    A more general version of the theorem applies to list coloring: given any connected undirected graph with maximum degree Δ that is neither a clique nor an odd cycle, and a list of Δ colors for each vertex, it is possible to choose a color for each vertex from its list so that no two adjacent vertices have the same color. In other words, the ...

  1. Related searches given the graph of yfx below find value − 1 12 9 11 niv version

    given the graph of yfx below find value − 1 12 9 11 niv version of the bible