Search results
Results from the WOW.Com Content Network
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
Applying the Mycielskian repeatedly, starting with the one-edge graph, produces a sequence of graphs M i = μ(M i−1), sometimes called the Mycielski graphs. The first few graphs in this sequence are the graph M 2 = K 2 with two vertices connected by an edge, the cycle graph M 3 = C 5 , and the Grötzsch graph M 4 with 11 vertices and 20 edges.
For a parametric curve this is an easy task: One just computes the points of a sequence of parametric values. For an implicit curve one has to solve two subproblems: determination of a first curve point to a given starting point in the vicinity of the curve, determination of a curve point starting from a known curve point.
The graph of a function on its own does not determine the codomain. It is common [3] to use both terms function and graph of a function since even if considered the same object, they indicate viewing it from a different perspective. Graph of the function () = over the interval [−2,+3]. Also shown are the two real roots and the local minimum ...
An abstract graph is said to be a unit distance graph if it is possible to find distinct locations in the plane for its vertices, so that its edges have unit length and so that all non-adjacent pairs of vertices have non-unit distances. When this is possible, the abstract graph is isomorphic to the unit distance graph of the chosen locations ...
The symmetries of P 1 F 7 are Möbius transformations, and the basic transformations are reflections (order 2, k ↦ −1/k), translations (order 7, k ↦ k + 1), and doubling (order 3 since 2 3 = 1, k ↦ 2k). The corresponding symmetries on the Fano plane are respectively swapping vertices, rotating the graph, and rotating triangles.
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
For instance, the graph shown in the first illustration has three components. Every vertex of a graph belongs to one of the graph's components, which may be found as the induced subgraph of the set of vertices reachable from . [1] Every graph is the disjoint union of its components. [2]