enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    Just as a linear force is a push or a pull applied to a body, a torque can be thought of as a twist applied to an object with respect to a chosen point; for example, driving a screw uses torque to force it into an object, which is applied by the screwdriver rotating around its axis to the drives on the head.

  3. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The angular momentum equation can be used to relate the moment of the resultant force on a body about an axis (sometimes called torque), and the rate of rotation about that axis. Torque and angular momentum are related according to =, just as F = dp/dt in linear dynamics. In the absence of an external torque, the angular momentum of a body ...

  4. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  5. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In an inertial frame of reference (subscripted "in"), Euler's second law states that the time derivative of the angular momentum L equals the applied torque: = For point particles such that the internal forces are central forces, this may be derived using Newton's second law.

  6. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    If momentum is to be conserved over the volume V over a region Q, changes in the momentum of matter through the Lorentz force must be balanced by changes in the momentum of the electromagnetic field and outflow of momentum. If P mech is the momentum of all the particles in Q, and the particles are treated as a continuum, then Newton's second ...

  7. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments ) acting on the rigid body.

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    where p i = momentum of particle i, F ij = force on particle i by particle j, and F E = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself. Torque. Torque τ is also called moment of a force, because it is the rotational analogue to force: [8]

  9. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    Under a constant torque of magnitude τ, the speed of precession Ω P is inversely proportional to L, the magnitude of its angular momentum: = ⁡, where θ is the angle between the vectors Ω P and L. Thus, if the top's spin slows down (for example, due to friction), its angular momentum decreases and so the rate of precession increases.