enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...

  3. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    The two strands of DNA in a double helix can thus be pulled apart like a zipper, either by a mechanical force or high temperature. [27] As a result of this base pair complementarity, all the information in the double-stranded sequence of a DNA helix is duplicated on each strand, which is vital in DNA replication.

  4. Histone acetylation and deacetylation - Wikipedia

    en.wikipedia.org/wiki/Histone_acetylation_and_de...

    The discovery of histone acetylation causing changes in transcription activity can be traced back to the work of Vicent Allfrey and colleagues in 1964. [14] The group hypothesized that histone proteins modified by acetyl groups added negative charges to the positive lysines, and thus, reduced the interaction between DNA and histones . [ 15 ]

  5. Z-DNA - Wikipedia

    en.wikipedia.org/wiki/Z-DNA

    Z-DNA is one of the many possible double helical structures of DNA. It is a left-handed double helical structure in which the helix winds to the left in a zigzag pattern, instead of to the right, like the more common B-DNA form. Z-DNA is thought to be one of three biologically active double-helical structures along with A-DNA and B-DNA.

  6. Triple-stranded DNA - Wikipedia

    en.wikipedia.org/wiki/Triple-stranded_DNA

    Triple-stranded DNA (also known as H-DNA or Triplex-DNA) is a DNA structure in which three oligonucleotides wind around each other and form a triple helix. In triple-stranded DNA, the third strand binds to a B-form DNA (via Watson–Crick base-pairing ) double helix by forming Hoogsteen base pairs or reversed Hoogsteen hydrogen bonds.

  7. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    In DNA double helix, the two strands of DNA are held together by hydrogen bonds. The nucleotides on one strand base pairs with the nucleotide on the other strand. The secondary structure is responsible for the shape that the nucleic acid assumes. The bases in the DNA are classified as purines and pyrimidines. The purines are adenine and guanine ...

  8. Hox gene - Wikipedia

    en.wikipedia.org/wiki/Hox_gene

    Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the correct structures form in the correct places of the body.

  9. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Bind to ssDNA and prevent the DNA double helix from re-annealing after DNA helicase unwinds it, thus maintaining the strand separation, and facilitating the synthesis of the new strand. Topoisomerase: Relaxes the DNA from its super-coiled nature. DNA gyrase: Relieves strain of unwinding by DNA helicase; this is a specific type of topoisomerase ...