Search results
Results from the WOW.Com Content Network
In formal language theory, a context-free grammar is in Greibach normal form (GNF) if the right-hand sides of all production rules start with a terminal symbol, optionally followed by some variables. A non-strict form allows one exception to this format restriction for allowing the empty word (epsilon, ε) to be a member of the described language.
An extended context-free grammar (or regular right part grammar) is one in which the right-hand side of the production rules is allowed to be a regular expression over the grammar's terminals and nonterminals. Extended context-free grammars describe exactly the context-free languages.
A parse tree or parsing tree [1] (also known as a derivation tree or concrete syntax tree) is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term parse tree itself is used primarily in computational linguistics; in theoretical syntax, the term syntax tree is more common.
To convert a grammar to Chomsky normal form, a sequence of simple transformations is applied in a certain order; this is described in most textbooks on automata theory. [4]: 87–94 [5] [6] [7] The presentation here follows Hopcroft, Ullman (1979), but is adapted to use the transformation names from Lange, Leiß (2009).
The representation of a grammar is a set of syntax diagrams. Each diagram defines a "nonterminal" stage in a process. There is a main diagram which defines the language in the following way: to belong to the language, a word must describe a path in the main diagram. Each diagram has an entry point and an end point.
A context-free grammar G is an SLG if: . 1. for every non-terminal N, there is at most one production rule that has N as its left-hand side, and . 2. the directed graph G=<V,E>, defined by V being the set of non-terminals and (A,B) ∈ E whenever B appears at the right-hand side of a production rule for A, is acyclic.
The pumping lemma for context-free languages (called just "the pumping lemma" for the rest of this article) describes a property that all context-free languages are guaranteed to have. The property is a property of all strings in the language that are of length at least p {\displaystyle p} , where p {\displaystyle p} is a constant—called the ...
Deterministic context-free grammars were particularly useful because they could be parsed sequentially by a deterministic pushdown automaton, which was a requirement due to computer memory constraints. [4] In 1965, Donald Knuth invented the LR(k) parser and proved that there exists an LR(k) grammar for every deterministic context-free language. [5]