Search results
Results from the WOW.Com Content Network
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
dc: "Desktop Calculator" arbitrary-precision RPN calculator that comes standard on most Unix-like systems. KCalc, Linux based scientific calculator; Maxima: a computer algebra system which bignum integers are directly inherited from its implementation language Common Lisp. In addition, it supports arbitrary-precision floating-point numbers ...
P(n) is the number of ways of writing n + 2 as an ordered sum in which each term is either 2 or 3 (i.e. the number of compositions of n + 2 in which each term is either 2 or 3). For example, P (6) = 4, and there are 4 ways to write 8 as an ordered sum of 2s and 3s:
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
iconst_3 06 0000 0110 → 3 load the int value 3 onto the stack iconst_4 07 0000 0111 → 4 load the int value 4 onto the stack iconst_5 08 0000 1000 → 5 load the int value 5 onto the stack idiv 6c 0110 1100 value1, value2 → result divide two integers if_acmpeq a5 1010 0101 2: branchbyte1, branchbyte2 value1, value2 →
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is and the common difference of successive members is , then the -th term of the sequence is given by