Search results
Results from the WOW.Com Content Network
Note the format of the parameter notation SXYab, where "S" stands for scattering parameter or S-parameter, "X" is the response mode (differential or common), "Y" is the stimulus mode (differential or common), "a" is the response (output) port and b is the stimulus (input) port. This is the typical nomenclature for scattering parameters.
The method uses scattering parameters of a material sample embedded in a waveguide, namely and , to calculate permittivity and permeability data. and correspond to the cumulative reflection and transmission coefficient of the sample that are referenced to the each sample end, respectively: these parameters account for the multiple internal reflections inside the sample, which is considered to ...
This program calculates the scattering, absorption, and attenuation parameters, as well as the angular scattering patterns of a single coated sphere according to Aden-Kerker theory. 2007 L. Liu, H. Wang, B. Yu, Y. Xu, J. Shen [15] C: Unknown Light scattering by a coated sphere (extinction efficiency, scattering efficiency, light scattering ...
In scattering theory, the S-matrix is an operator mapping free particle in-states to free particle out-states (scattering channels) in the Heisenberg picture. This is very useful because often we cannot describe the interaction (at least, not the most interesting ones) exactly.
In physics, and especially scattering theory, the momentum-transfer cross section (sometimes known as the momentum-transport cross section [1]) is an effective scattering cross section useful for describing the average momentum transferred from a particle when it collides with a target. Essentially, it contains all the information about a ...
Scattering from any spherical particles with arbitrary size parameter is explained by the Mie theory. Mie theory, also called Lorenz-Mie theory or Lorenz-Mie-Debye theory, is a complete analytical solution of Maxwell's equations for the scattering of electromagnetic radiation by spherical particles (Bohren and Huffman, 1998).
PML is widely used and has become the absorbing boundary technique of choice in much of computational electromagnetism. [1] Although it works well in most cases, there are a few important cases in which it breaks down, suffering from unavoidable reflections or even exponential growth.
Rayleigh–Gans approximation has been applied on the calculation of the optical cross sections of fractal aggregates. [6] The theory was also applied to anisotropic spheres for nanostructured polycrystalline alumina and turbidity calculations on biological structures such as lipid vesicles [7] and bacteria.