enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.

  3. Barlow's formula - Wikipedia

    en.wikipedia.org/wiki/Barlow's_formula

    For example, in 100 countries the ASME BPVCcode stipulates the requirements for design and testing of pressure vessels. [4] The formula is also common in the pipeline industry to verify that pipe used for gathering, transmission, and distribution lines can safely withstand operating pressures.

  4. HDPE pipe - Wikipedia

    en.wikipedia.org/wiki/HDPE_pipe

    HDPE pipe is a type of flexible plastic pipe used to transfer fluids and gases. It is often employed for replacing aging concrete or steel main pipelines . Constructed from the thermoplastic HDPE (high-density polyethylene ), it has low permeability and robust molecular bonding, making it suitable for high-pressure pipelines .

  5. High-density polyethylene - Wikipedia

    en.wikipedia.org/wiki/High-density_polyethylene

    HDPE is known for its high strength-to-density ratio. [4] The density of HDPE ranges from 930 to 970 kg/m 3. [5] Although the density of HDPE is only marginally higher than that of low-density polyethylene, HDPE has little branching, giving it stronger intermolecular forces and tensile strength (38 MPa versus 21 MPa) than LDPE. [6]

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    where the pressure loss per unit length ⁠ Δp / L ⁠ (SI units: Pa/m) is a function of: , the density of the fluid (kg/m 3);, the hydraulic diameter of the pipe (for a pipe of circular section, this equals D; otherwise D H = 4A/P for a pipe of cross-sectional area A and perimeter P) (m);

  7. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.

  8. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.

  9. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    When the pipes have certain roughness <, this factor must be taken in account when the Fanning friction factor is calculated. The relationship between pipe roughness and Fanning friction factor was developed by Haaland (1983) under flow conditions of 4 ⋅ 10 4 < R e < 10 7 {\displaystyle 4\centerdot 10^{4}<Re<10^{7}}