Search results
Results from the WOW.Com Content Network
Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem. The factor theorem is another application of the remainder theorem: if the remainder is zero, then the linear divisor is a factor. Repeated application of the factor theorem may be used to factorize the polynomial. [3]
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
Download as PDF; Printable version; In other projects Wikidata item ... Remainder theorem may refer to: Polynomial remainder theorem; Chinese remainder theorem; This ...
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]
The main theorem of strong approximation (Kneser 1966, p.188) states that a non-solvable linear algebraic group G over a global field k has strong approximation for the finite set S if and only if its radical N is unipotent, G/N is simply connected, and each almost simple component H of G/N has a non-compact component H s for some s in S ...
The questions remained whether a contradiction could be derived from the Principia's axioms, and whether there exists a mathematical statement which could neither be proven nor disproven in the system. These questions were settled, in a rather surprising way, by Gödel's incompleteness theorem in 1931.
Divide the highest term of the remainder by the highest term of the divisor (3x ÷ x = 3). Place the result (+3) below the bar. 3x has been divided leaving no remainder, and can therefore be marked as used. The result 3 is then multiplied by the second term in the divisor −3 = −9. Determine the partial remainder by subtracting −4 − (− ...