enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A space-filling tetrahedral disphenoid inside a cube. Two edges have dihedral angles of 90°, and four edges have dihedral angles of 60°. A disphenoid is a tetrahedron with four congruent triangles as faces; the triangles necessarily have all angles acute. The regular tetrahedron is a special case of a disphenoid.

  4. Euler brick - Wikipedia

    en.wikipedia.org/wiki/Euler_brick

    In the case of the body cuboid, the body (space) diagonal g is irrational. For the edge cuboid, one of the edges a, b, c is irrational. The face cuboid has one of the face diagonals d, e, f irrational. The body cuboid is commonly referred to as the Euler cuboid in honor of Leonhard Euler, who discussed this type of cuboid. [15]

  5. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A rectangular cuboid is a convex polyhedron with six rectangle faces. The dihedral angles of a rectangular cuboid are all right angles, and its opposite faces are congruent. [2] Because of the faces' orthogonality, the rectangular cuboid is classified as convex orthogonal polyhedron. [3] By definition, this makes it a right rectangular prism.

  6. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In the case of the coordinates of the six vertices where four faces meet at their acute angles, they are (±2, 0, 0), (0, ±2, 0) and (0, 0, ±2). The rhombic dodecahedron can be seen as a degenerate limiting case of a pyritohedron , with permutation of coordinates (±1, ±1, ±1) and (0, 1 + h , 1 − h 2 ) with parameter h = 1.

  7. Rhombohedron - Wikipedia

    en.wikipedia.org/wiki/Rhombohedron

    A rhombohedron has two opposite apices at which all face angles are equal; a prolate rhombohedron has this common angle acute, and an oblate rhombohedron has an obtuse angle at these vertices. A cube is a special case of a rhombohedron with all sides square .

  8. Geometrical-optical illusions - Wikipedia

    en.wikipedia.org/wiki/Geometrical-optical_illusions

    The widely accepted interpretation of, e.g. the Poggendorff and Hering illusions as manifestation of expansion of acute angles at line intersections, is an example of successful implementation of a "bottom-up," physiological explanation of a geometrical–optical illusion. Ponzo illusion in a purely schematic form and, below, with perspective clues

  9. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    A saddle rectangle has 4 nonplanar vertices, alternated from vertices of a rectangular cuboid, with a unique minimal surface interior defined as a linear combination of the four vertices, creating a saddle surface. This example shows 4 blue edges of the rectangle, and two green diagonals, all being diagonal of the cuboid rectangular faces.