enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scalar curvature - Wikipedia

    en.wikipedia.org/wiki/Scalar_curvature

    Given a Riemannian metric g, the scalar curvature Scal is defined as the trace of the Ricci curvature tensor with respect to the metric: [1] = ⁡. The scalar curvature cannot be computed directly from the Ricci curvature since the latter is a (0,2)-tensor field; the metric must be used to raise an index to obtain a (1,1)-tensor field in order to take the trace.

  3. Curvature of Riemannian manifolds - Wikipedia

    en.wikipedia.org/wiki/Curvature_of_Riemannian...

    The Weyl tensor is invariant with respect to a conformal change of metric: if two metrics are related as ⁠ ~ = ⁠ for some positive scalar function ⁠ ⁠, then ⁠ ~ = ⁠. In dimensions 2 and 3 the Weyl tensor vanishes, but in 4 or more dimensions the Weyl tensor can be non-zero.

  4. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    A positive curvature corresponds to the inverse square radius of curvature; an example is a sphere or hypersphere. An example of negatively curved space is hyperbolic geometry (see also: non-positive curvature). A space or space-time with zero curvature is called flat.

  5. Prescribed scalar curvature problem - Wikipedia

    en.wikipedia.org/wiki/Prescribed_scalar...

    In Riemannian geometry, a branch of mathematics, the prescribed scalar curvature problem is as follows: given a closed, smooth manifold M and a smooth, real-valued function ƒ on M, construct a Riemannian metric on M whose scalar curvature equals ƒ. Due primarily to the work of J. Kazdan and F. Warner in the 1970s, this problem is well understood.

  6. Ricci curvature - Wikipedia

    en.wikipedia.org/wiki/Ricci_curvature

    Here is a short list of global results concerning manifolds with positive Ricci curvature; see also classical theorems of Riemannian geometry. Briefly, positive Ricci curvature of a Riemannian manifold has strong topological consequences, while (for dimension at least 3), negative Ricci curvature has no topological

  7. Ricci soliton - Wikipedia

    en.wikipedia.org/wiki/Ricci_soliton

    Here is the Ricci curvature tensor and represents the Lie derivative. If there exists a function f : M → R {\displaystyle f:M\rightarrow \mathbb {R} } such that V = ∇ f {\displaystyle V=\nabla f} we call ( M , g ) {\displaystyle (M,g)} a gradient Ricci soliton and the soliton equation becomes

  8. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    The only regular (of class C 2) closed surfaces in R 3 with constant positive Gaussian curvature are spheres. [2] If a sphere is deformed, it does not remain a sphere, proving that a sphere is rigid. A standard proof uses Hilbert's lemma that non-umbilical points of extreme principal curvature have non-positive Gaussian curvature. [3]

  9. De Sitter space - Wikipedia

    en.wikipedia.org/wiki/De_Sitter_space

    In mathematical physics, n-dimensional de Sitter space (often denoted dS n) is a maximally symmetric Lorentzian manifold with constant positive scalar curvature.It is the Lorentzian [further explanation needed] analogue of an n-sphere (with its canonical Riemannian metric).