enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    Perfect multicollinearity refers to a situation where the predictive variables have an exact linear relationship. When there is perfect collinearity, the design matrix has less than full rank, and therefore the moment matrix cannot be inverted.

  3. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  4. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    For example, in an exchangeable correlation matrix, all pairs of variables are modeled as having the same correlation, so all non-diagonal elements of the matrix are equal to each other. On the other hand, an autoregressive matrix is often used when variables represent a time series, since correlations are likely to be greater when measurements ...

  5. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    Two variables are perfectly collinear if there is an exact linear relationship between the two, so the correlation between them is equal to 1 or −1. That is, X 1 and X 2 are perfectly collinear if there exist parameters λ 0 {\displaystyle \lambda _{0}} and λ 1 {\displaystyle \lambda _{1}} such that, for all observations i , we have

  6. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  7. Partial correlation - Wikipedia

    en.wikipedia.org/wiki/Partial_correlation

    It can be computationally expensive to solve the linear regression problems. Actually, the nth-order partial correlation (i.e., with |Z| = n) can be easily computed from three (n - 1)th-order partial correlations. The zeroth-order partial correlation ρ XY·Ø is defined to be the regular correlation coefficient ρ XY.

  8. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.

  9. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Lack of perfect multicollinearity in the predictors. For standard least squares estimation methods, the design matrix X must have full column rank p; otherwise perfect multicollinearity exists in the predictor variables, meaning a linear relationship exists between two or more predictor variables. This can be caused by accidentally duplicating ...