Search results
Results from the WOW.Com Content Network
Copper loss is the term often given to heat produced by electrical currents in the conductors of transformer windings, or other electrical devices. Copper losses are an undesirable transfer of energy , as are core losses , which result from induced currents in adjacent components.
where is the time average power loss per unit volume in mW per cubic centimeter, is frequency in kilohertz, and is the peak magnetic flux density; , , and , called the Steinmetz coefficients, are material parameters generally found empirically from the material's B-H hysteresis curve by curve fitting. In typical magnetic materials, the ...
The methods described included all the heat generation mechanisms from a power cable (conductor loss, dielectric loss and shield loss). [ 2 ] From the basic principles that electric current leads to thermal heating and thermal power transfer to the ambient environment requires some temperature difference, it follows that the current leads to a ...
The loss tangent is then defined as the ratio (or angle in a complex plane) of the lossy reaction to the electric field E in the curl equation to the lossless reaction: tan δ = ω ε ″ + σ ω ε ′ . {\displaystyle \tan \delta ={\frac {\omega \varepsilon ''+\sigma }{\omega \varepsilon '}}.}
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
However, in applications where heating is an unwanted by-product of current use (e.g., load losses in electrical transformers) the diversion of energy is often referred to as resistive loss. The use of high voltages in electric power transmission systems is specifically designed to reduce such losses in cabling by operating with commensurately ...
Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot object from one place to another must not be called heat transfer. However, it is common to say ‘heat flow’ to mean ‘heat content’. [1]
In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. . Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to t