enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ketone halogenation - Wikipedia

    en.wikipedia.org/wiki/Ketone_halogenation

    Reaction mechanism for the bromination of acetone while in the presence of acetic acid. Basic (in aqueous NaOH): Reaction mechanism for the bromination of acetone while in the presence of aqueous NaOH. In acidic solution, usually only one alpha hydrogen is replaced by a halogen, as each successive halogenation is slower than the first.

  3. Carbonyl reduction - Wikipedia

    en.wikipedia.org/wiki/Carbonyl_reduction

    Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H. Two broad strategies exist for carbonyl reduction. One method, which is favored in industry, uses hydrogen as the reductant.

  4. Haloform reaction - Wikipedia

    en.wikipedia.org/wiki/Haloform_reaction

    In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.

  5. Bromoacetone - Wikipedia

    en.wikipedia.org/wiki/Bromoacetone

    As with all ketones, acetone enolizes in the presence of acids or bases. The alpha carbon then undergoes electrophilic substitution with bromine. The main difficulty with this method is over-bromination, resulting in di- and tribrominated products. If a base is present, bromoform is obtained instead, by the haloform reaction. [5]

  6. Alcohol oxidation - Wikipedia

    en.wikipedia.org/wiki/Alcohol_oxidation

    Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.

  7. Favorskii rearrangement - Wikipedia

    en.wikipedia.org/wiki/Favorskii_rearrangement

    The photo-Favorskii reaction has been used in the photochemical unlocking of certain phosphates (for instance those of ATP) protected by p-hydroxyphenacyl groups. [13] The deprotection proceeds through a triplet diradical ( 3 ) and a dione spiro intermediate ( 4 ) although the latter has thus far eluded detection.

  8. Carbonyl α-substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Carbonyl_α-substitution...

    A hydrogen on the α position of a carbonyl compound is weakly acidic and can be removed by a strong base to yield an enolate ion. In comparing acetone (pK a = 19.3) with ethane (pK a = 60), for instance, the presence of a neighboring carbonyl group increases the acidity of the ketone over the alkane by a factor of 10 40.

  9. Transition metal complexes of aldehydes and ketones

    en.wikipedia.org/wiki/Transition_metal_complexes...

    In monometallic complexes, aldehydes and ketones can bind to metals in either of two modes, η 1-O-bonded and η 2-C,O-bonded. These bonding modes are sometimes referred to sigma- and pi-bonded. These forms may sometimes interconvert. The sigma bonding mode is more common for higher valence, Lewis-acidic metal centers (e.g., Zn 2+). [1]