Search results
Results from the WOW.Com Content Network
Two points in the upper half-plane give isomorphic elliptic curves if and only if they are related by a transformation in the modular group. Thus, the quotient of the upper half-plane by the action of the modular group is the so-called moduli space of elliptic curves: a space whose points describe isomorphism classes of elliptic curves. This is ...
A modular function is a function that is invariant with respect to the modular group, but without the condition that it be holomorphic in the upper half-plane (among other requirements). Instead, modular functions are meromorphic: they are holomorphic on the complement of a set of isolated points, which are poles of the function.
The modular function is a continuous group homomorphism from G to the multiplicative group of positive real numbers. A group is called unimodular if the modular function is identically 1 {\displaystyle 1} , or, equivalently, if the Haar measure is both left and right invariant.
The modular group SL(2, Z) acts on the upper half-plane by fractional linear transformations.The analytic definition of a modular curve involves a choice of a congruence subgroup Γ of SL(2, Z), i.e. a subgroup containing the principal congruence subgroup of level N for some positive integer N, which is defined to be
It contains the modular group PSL(2, Z). Also closely related is the 2-fold covering group, Mp(2, R), a metaplectic group (thinking of SL(2, R) as a symplectic group). Another related group is SL ± (2, R), the group of real 2 × 2 matrices with determinant ±1; this is more commonly used in the context of the modular group, however.
The matrices [e 1, ..., e n] are divisible by all non-zero linear forms in the variables X i with coefficients in the finite field F q. In particular the Moore determinant [0, 1, ..., n − 1] is a product of such linear forms, taken over 1 + q + q 2 + ... + q n – 1 representatives of ( n – 1)-dimensional projective space over the field.
The 2-cycles interchange these, as they do any points other than their fixed points, which realizes the quotient map S 3 → S 2 by the group action on these two points. That is, the subgroup C 3 < S 3 consisting of the identity and the 3-cycles, {(), (0 1 ∞), (0 ∞ 1)}, fixes these two points, while the other elements interchange them.
That implies that any two rational functions F and G, in the function field of the modular curve, will satisfy a modular equation P(F,G) = 0 with P a non-zero polynomial of two variables over the complex numbers. For suitable non-degenerate choice of F and G, the equation P(X,Y) = 0 will actually define the modular curve.