Search results
Results from the WOW.Com Content Network
The triangle inequality is a defining property of norms and measures of distance. This property must be established as a theorem for any function proposed for such purposes for each particular space: for example, spaces such as the real numbers, Euclidean spaces, the L p spaces (p ≥ 1), and inner product spaces.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c; the semiperimeter s = (a + b + c) / 2 (half the perimeter p); the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures); the ...
The triangle inequality states that the sum of the lengths of any two sides of a triangle must be greater than or equal to the length of the third side. [48] Conversely, some triangle with three given positive side lengths exists if and only if those side lengths satisfy the triangle inequality. [49]
Formal definition. An ultrametric on a set M is a real -valued function. (where ℝ denote the real numbers), such that for all x, y, z ∈ M: d(x, z) ≤ max {d(x, y), d(y, z)} (strong triangle inequality or ultrametric inequality). An ultrametric space is a pair (M, d) consisting of a set M together with an ultrametric d on M, which is called ...
The Minkowski inequality is the triangle inequality in In fact, it is a special case of the more general fact where it is easy to see that the right-hand side satisfies the triangular inequality. (the number of elements in ).
The symmetric difference is the set of elements that are in either set, but not in the intersection. Symbolic statement. A Δ B = ( A ∖ B ) ∪ ( B ∖ A ) {\displaystyle A\,\Delta \,B=\left (A\setminus B\right)\cup \left (B\setminus A\right)} In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set ...
Erdős–Mordell inequality. In Euclidean geometry, the Erdős–Mordell inequality states that for any triangle ABC and point P inside ABC, the sum of the distances from P to the sides is less than or equal to half of the sum of the distances from P to the vertices. It is named after Paul Erdős and Louis Mordell.
Hölder's inequality is used to prove the Minkowski inequality, which is the triangle inequality in the space L p (μ), and also to establish that L q (μ) is the dual space of L p (μ) for p ∈ [1, ∞). Hölder's inequality (in a slightly different form) was first found by Leonard James Rogers .