enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A full binary tree (sometimes referred to as a proper, [15] plane, or strict binary tree) [16] [17] is a tree in which every node has either 0 or 2 children. Another way of defining a full binary tree is a recursive definition. A full binary tree is either: [11] A single vertex (a single node as the root node). A tree whose root node has two ...

  3. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    A binary heap is defined as a binary tree with two additional constraints: [3] Shape property: a binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.

  4. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.

  5. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:

  6. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (a tree with no vertices, if such are allowed) has depth and height −1. A k-ary tree (for nonnegative integers k) is a rooted tree in which each vertex has at most k ...

  7. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    The B-tree generalizes the binary search tree, allowing for nodes with more than two children. [2] Unlike other self-balancing binary search trees, the B-tree is well suited for storage systems that read and write relatively large blocks of data, such as databases and file systems.

  8. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    It is the first self-balancing binary search tree data structure to be invented. [3] AVL trees are often compared with red–black trees because both support the same set of operations and take (⁡) time for the basic operations.

  9. Day–Stout–Warren algorithm - Wikipedia

    en.wikipedia.org/wiki/Day–Stout–Warren_algorithm

    The Day–Stout–Warren (DSW) algorithm is a method for efficiently balancing binary search trees – that is, decreasing their height to O(log n) nodes, where n is the total number of nodes. Unlike a self-balancing binary search tree , it does not do this incrementally during each operation, but periodically, so that its cost can be amortized ...