Search results
Results from the WOW.Com Content Network
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) ' impassable ') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.
In contrast, if the process is irreversible, entropy is produced within the system; consequently, in order to maintain constant entropy within the system, energy must be simultaneously removed from the system as heat. For reversible processes, an isentropic transformation is carried out by thermally "insulating" the system from its surroundings.
The system always contains the same amount of matter, but (sensible) heat and (boundary) work can be exchanged across the boundary of the system. Whether a system can exchange heat, work, or both is dependent on the property of its boundary. Adiabatic boundary – not allowing any heat exchange: A thermally isolated system
"Adiabatic" is a term of Greek origin that has spent most of its history associated with classical thermodynamics. It refers to a system in which a transition occurs without energy (usually in the form of heat) being either lost to or gained from the system. In the context of electronic systems, rather than heat, electronic charge is preserved.
a physical system so far removed from other systems that it does not interact with them. a thermodynamic system enclosed by rigid immovable walls through which neither mass nor energy can pass. Though subject internally to its own gravity, an isolated system is usually taken to be outside the reach of external gravitational and other long-range ...
Changes to the rules mean homes are no longer required to have existing loft or cavity wall insulation, which could save around £2,500 in upfront costs, but a well-insulated home can help the ...
An adiabatic process is a process in which there is no matter or heat transfer, because a thermally insulating wall separates the system from its surroundings. For the process to be natural, either (a) work must be done on the system at a finite rate, so that the internal energy of the system increases; the entropy of the system increases even ...
When some are not adiabatic, then the system is not adiabatically enclosed, though adiabatic transfer of energy as work can occur across the adiabatic walls. The adiabatic enclosure is important because, according to one widely cited author, Herbert Callen , "An essential prerequisite for the measurability of energy is the existence of walls ...