Search results
Results from the WOW.Com Content Network
A regular skew hexagon is vertex-transitive with equal edge lengths. In three dimensions it will be a zig-zag skew hexagon and can be seen in the vertices and side edges of a triangular antiprism with the same D 3d , [2 + ,6] symmetry, order 12.
Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.
If the edge length of a regular dodecahedron is , the radius of a circumscribed sphere (one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere (tangent to each of the regular dodecahedron's faces), and the midradius (one that touches the middle of each edge) are: [21] =, =, =. Given a regular dodecahedron ...
Comparison of sizes of regular polygons with the same edge length, from three to sixty sides. The size increases without bound as the number of sides approaches infinity. Of all n-gons with a given perimeter, the one with the largest area is regular. [10]
A regular skew hexadecagon is vertex-transitive with equal edge lengths. In 3-dimensions it will be a zig-zag skew hexadecagon and can be seen in the vertices and side edges of an octagonal antiprism with the same D 8d , [2 + ,16] symmetry, order 32.
The dihedral angle of a truncated icosahedron between adjacent hexagonal faces is approximately 138.18°, and that between pentagon-to-hexagon is approximately 142.6°. [ 4 ] The truncated icosahedron is an Archimedean solid , meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in ...
A regular skew icositetragon is vertex-transitive with equal edge lengths. In 3-dimensions it will be a zig-zag skew icositetragon and can be seen in the vertices and side edges of a dodecagonal antiprism with the same D 12d, [2 +,24] symmetry, order 48. The dodecagrammic antiprism, s{2,24/5} and dodecagrammic crossed-antiprism, s{2,24/7} also ...
Cartesian coordinates for the vertices of a truncated hexahedron centered at the origin with edge length 2 1 / δ S are all the permutations of (± 1 / δ S , ±1, ±1), where δ S = √ 2 +1. If we let a parameter ξ= 1 / δ S , in the case of a Regular Truncated Cube, then the parameter ξ can be varied between ±1.