Search results
Results from the WOW.Com Content Network
Common names for ketones can be derived by naming the two alkyl or aryl groups bonded to the carbonyl group as separate words followed by the word ketone. Acetone; Acetophenone; Benzophenone; Ethyl isopropyl ketone; Diethyl ketone; The first three of the names shown above are still considered to be acceptable IUPAC names.
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...
the simplest aldehyde; an important precursor to many other chemical compounds, such as polymers and polyfunctional alcohols Formic acid: the simplest carboxylic acid; often used as a source of the hydride ion Grignard reagents: the most common application is for alkylation of aldehydes and ketones: [4] Hexamethylphosphoramide
Ketones are trigonal planar around the ketonic carbon, with C–C–O and C–C–C bond angles of approximately 120°. Ketones differ from aldehydes in that the carbonyl group (C=O) is bonded to two carbons within a carbon skeleton. In aldehydes, the carbonyl is bonded to one carbon and one hydrogen and are located at the ends of carbon chains.
The name combines the suffix 'ol' from the alcohol and the prefix depending on the carbonyl group, either 'ald' for an aldehyde, or 'ket' for a ketone, in which case it referred to as a 'ketol'. An aldol may also use the term β-hydroxy aldehyde (or β-hydroxy ketone for a ketol). The term "aldol" may refer to 3-hydroxybutanal. [1] [2]
Hemiacetals form in the reaction between alcohols and aldehydes or ketones. Using an acid catalyst, the reaction proceeds via nucleophilic attack of the carbonyl group by the alcohol. [4] A subsequent nucleophilic attack of the hemiacetal by the alcohol results in an acetal. [2] Solutions of simple aldehydes in alcohols mainly consist of the ...
Because primary and secondary amines react with aldehydes and ketones, the most common variety of these aminocarbonyl compounds feature tertiary amines. Such compounds are produced by amination of α-haloketones and α-haloaldehydes. [1] Examples include cathinones, methadone, molindone, pimeclone, ferruginine, and tropinone.
The use of aldehyde in the name comes from its history: aldehydes are more reactive than ketones, so that the reaction was discovered first with them. [2] [3] [4] The aldol reaction is paradigmatic in organic chemistry and one of the most common means of forming carbon–carbon bonds in organic chemistry.