enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Extra-close oppositions of Mars happen every 15 to 17 years, when we pass between Mars and the Sun around the time of its perihelion (closest point to the Sun in orbit). The minimum distance between Earth and Mars has been declining over the years, and in 2003 the minimum distance was 55.76 million km, nearer than any such encounter in almost ...

  3. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    The Mars time of noon is 12:00 which is in Earth time 12 hours and 20 minutes after midnight. For the Mars Pathfinder, Mars Exploration Rover (MER), Phoenix, and Mars Science Laboratory missions, the operations teams have worked on "Mars time", with a work schedule synchronized to the local time at the landing site on Mars, rather than the ...

  4. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  5. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    The equation of time vanishes only for a planet with zero axial tilt and zero orbital eccentricity. [5] Two examples of planets with large equations of time are Mars and Uranus. On Mars the difference between sundial time and clock time can be as much as 50 minutes, due to the considerably greater eccentricity of its orbit.

  6. Vicarious Hypothesis - Wikipedia

    en.wikipedia.org/wiki/Vicarious_Hypothesis

    [1] [2] [3] The hypothesis adopted the circular orbit and equant of Ptolemy's planetary model as well as the heliocentrism of the Copernican model. [4] [5] Calculations using the Vicarious Hypothesis did not support a circular orbit for Mars, leading Kepler to propose elliptical orbits as one of three laws of planetary motion in Astronomia Nova ...

  7. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    true anomaly at time t 1 = −7.577° true anomaly at time t 2 = 92.423° This y-value corresponds to Figure 3. With r 1 = 10000 km; r 2 = 16000 km; α = 260° one gets the same ellipse with the opposite direction of motion, i.e. true anomaly at time t 1 = 7.577° true anomaly at time t 2 = 267.577° = 360° − 92.423° and a transfer time of ...

  8. Deferent and epicycle - Wikipedia

    en.wikipedia.org/wiki/Deferent_and_epicycle

    Finding the coefficients a j to represent a time-dependent path in the complex plane, z = f(t), is the goal of reproducing an orbit with deferent and epicycles, and this is a way of "saving the phenomena" (σώζειν τα φαινόμενα). [28] This parallel was noted by Giovanni Schiaparelli.

  9. Areostationary orbit - Wikipedia

    en.wikipedia.org/wiki/Areostationary_orbit

    An areostationary orbit, areosynchronous equatorial orbit (AEO), or Mars geostationary orbit is a circular areo­synchronous orbit (ASO) approximately 17,032 km (10,583 mi) in altitude above the Mars equator and following the direction of Mars's rotation. An object in such an orbit has an orbital period equal to Mars's rotational period, and so ...