enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

  3. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    if it is zero, then x could be a local minimum, a local maximum, or neither. (For example, f(x) = x 3 has a critical point at x = 0, but it has neither a maximum nor a minimum there, whereas f(x) = ± x 4 has a critical point at x = 0 and a minimum and a maximum, respectively, there.) This is called the second derivative test.

  4. Xcas - Wikipedia

    en.wikipedia.org/wiki/Xcas

    Here is a brief overview of what Xcas is able to do: [9] [10] Xcas has the ability of a scientific calculator that provides show input and writes pretty print; Xcas works also as a spreadsheet; [11]

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Download QR code; Print/export ... the derivative is a fundamental tool that quantifies the sensitivity to change of a ... Online Derivative Calculator from Wolfram Alpha

  6. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  7. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  8. Grünwald–Letnikov derivative - Wikipedia

    en.wikipedia.org/wiki/Grünwald–Letnikov...

    In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.

  9. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The rate of change of f with respect to x is usually the partial derivative of f with respect to x; in this case, ∂ f ∂ x = y . {\displaystyle {\frac {\partial f}{\partial x}}=y.} However, if y depends on x , the partial derivative does not give the true rate of change of f as x changes because the partial derivative assumes that y is fixed.