enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum dot cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot_cellular_automaton

    In this structure, the electrical field effect of each input on the output is identical and additive, with the result that whichever input state ("binary 0" or "binary 1") is in the majority becomes the state of the output cell — hence the gate's name. For example, if inputs A and B exist in a “binary 0” state and input C exists in a ...

  3. Majority function - Wikipedia

    en.wikipedia.org/wiki/Majority_function

    This is proved using probabilistic method. Thus, this formula is non-constructive. [3] Approaches exist for an explicit formula for majority of polynomial size: Take the median from a sorting network, where each compare-and-swap "wire" is simply an OR gate and an AND gate. The Ajtai–Komlós–Szemerédi (AKS) construction is an example.

  4. Quantum neural network - Wikipedia

    en.wikipedia.org/wiki/Quantum_neural_network

    A key difference lies in communication between the layers of a neural networks. For classical neural networks, at the end of a given operation, the current perceptron copies its output to the next layer of perceptron(s) in the network. However, in a quantum neural network, where each perceptron is a qubit, this would violate the no-cloning theorem.

  5. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear. [ 1 ] Modern activation functions include the logistic ( sigmoid ) function used in the 2012 speech recognition model developed by Hinton et al; [ 2 ] the ReLU used in the 2012 AlexNet computer vision model [ 3 ] [ 4 ] and in the 2015 ResNet model ...

  6. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    The perceptron learning rule originates from the Hebbian assumption, and was used by Frank Rosenblatt in his perceptron in 1958. The net is passed to the activation function and the function's output is used for adjusting the weights. The learning signal is the difference between the desired response and the actual response of a neuron.

  7. AND gate - Wikipedia

    en.wikipedia.org/wiki/AND_gate

    The AND gate is a basic digital logic gate that implements the logical conjunction (∧) from mathematical logic – AND gates behave according to their truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If all of the inputs to the AND gate are not HIGH, a LOW (0) is outputted.

  8. List of quantum logic gates - Wikipedia

    en.wikipedia.org/wiki/List_of_quantum_logic_gates

    The SWAP gate can be constructed from other gates, for example using the two-qubit interaction gates: = (/) (/) (/). In superconducting circuits, the family of gates resulting from Heisenberg interactions is sometimes called the fSim gate set.

  9. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    The Voted Perceptron (Freund and Schapire, 1999), is a variant using multiple weighted perceptrons. The algorithm starts a new perceptron every time an example is wrongly classified, initializing the weights vector with the final weights of the last perceptron.