Search results
Results from the WOW.Com Content Network
Desorption electrospray ionization (DESI) is an ambient ionization technique that can be coupled to mass spectrometry (MS) for chemical analysis of samples at atmospheric conditions. Coupled ionization sources-MS systems are popular in chemical analysis because the individual capabilities of various sources combined with different MS systems ...
Extractive electrospray ionization is a spray-type, ambient ionization method that uses two merged sprays, one of which is generated by electrospray. [ 49 ] Laser-based electrospray-based ambient ionization is a two-step process in which a pulsed laser is used to desorb or ablate material from a sample and the plume of material interacts with ...
[13] [9] [2] In addition to the source geometry optimization, the electrospray solvent composition has an effect on the MALDESI signals (i.e. influencing molecular coverage and ion abundance). In a study to improve the detection of tissue-specific lipids, the electrospray parameters have been tailored for positive and negative ionization ...
DESI and DART are considered as pioneer techniques in the field of ambient ionization, [4] since they operate in the open laboratory environment and do not require sample pretreatment. [5] [6] In contrast to the liquid spray used by DESI, the ionizing gas from the DART ion source contains a dry stream containing excited state species.
Nanospray desorption electrospray ionization (nano-DESI) is an ambient pressure ionization technique used in mass spectrometry (MS) for chemical analysis of organic molecules. [1] In this technique, analytes are desorbed into a liquid bridge formed between two capillaries and the sampling surface. [ 2 ]
Ambient ionization techniques are attractive for many samples for their high tolerance to complex mixtures and for fast testing. EESI has been employed for the rapid characterization of living objects, [ 10 ] native proteins , [ 11 ] and metabolic biomarkers .
The energy of the electron beam is typically 70 electronvolts and the ionization process typically produces extensive fragmentation of the chemical bonds of the molecule. Due to the high vacuum pressure in the ionization chamber, the mean free path of molecules are varying from 10 cm to 1 km and then the fragmentations are unimolecular processes.
Molecular ion beam deposition employs electrospray ionization or MALDI sources. [3] The ions are then accelerated, focused or deflected using high voltages or magnetic fields. Optional deceleration at the substrate can be employed to define the deposition energy. This energy usually ranges from a few eV up to a few keV. [3]