Search results
Results from the WOW.Com Content Network
Desorption electrospray ionization (DESI) is an ambient ionization technique that can be coupled to mass spectrometry (MS) for chemical analysis of samples at atmospheric conditions. Coupled ionization sources-MS systems are popular in chemical analysis because the individual capabilities of various sources combined with different MS systems ...
Extractive electrospray ionization is a spray-type, ambient ionization method that uses two merged sprays, one of which is generated by electrospray. [ 49 ] Laser-based electrospray-based ambient ionization is a two-step process in which a pulsed laser is used to desorb or ablate material from a sample and the plume of material interacts with ...
Nanospray desorption electrospray ionization (nano-DESI) is an ambient pressure ionization technique used in mass spectrometry (MS) for chemical analysis of organic molecules. [1] In this technique, analytes are desorbed into a liquid bridge formed between two capillaries and the sampling surface. [ 2 ]
Ambient ionization techniques are attractive for many samples for their high tolerance to complex mixtures and for fast testing. EESI has been employed for the rapid characterization of living objects, [ 10 ] native proteins , [ 11 ] and metabolic biomarkers .
The energy of the electron beam is typically 70 electronvolts and the ionization process typically produces extensive fragmentation of the chemical bonds of the molecule. Due to the high vacuum pressure in the ionization chamber, the mean free path of molecules are varying from 10 cm to 1 km and then the fragmentations are unimolecular processes.
DART resulted from conversations between Laramee and Cody about the development of an atmospheric pressure ion source to replace the radioactive sources in handheld chemical weapons detectors.DART was developed in late 2002 to early 2003 by Cody and Laramee as a new atmospheric pressure ionization process, [2] and a US patent application was filed in April 2003.
Molecular ion beam deposition employs electrospray ionization or MALDI sources. [3] The ions are then accelerated, focused or deflected using high voltages or magnetic fields. Optional deceleration at the substrate can be employed to define the deposition energy. This energy usually ranges from a few eV up to a few keV. [3]
The chemical ionization process generally imparts less energy to an analyte molecule than does electron impact (EI) ionization, resulting in less fragmentation [2] and usually a simpler spectrum. The amount of fragmentation, and therefore the amount of structural information produced by the process can be controlled to some degree by selection ...