Search results
Results from the WOW.Com Content Network
The nozzles on a rocket designed to place satellites in orbit are constructed using such converging-diverging geometry. The energy and continuity equations can take on particularly helpful forms for the steady, uniform, isentropic flow through the nozzle. Apply the energy equation with Q, W S = 0 between the reservoir and some location in the ...
For example, the Mach number evolution of an ideal gas in a supersonic nozzle depends only on the heat capacity ratio (namely on the fluid) and on the exhaust-to-stagnation pressure ratio. [6] Considering real-gas effects, instead, even fixing the fluid and the pressure ratio, different total states yield different Mach profiles. [17]
Figure 1a shows the flow through the nozzle when it is completely subsonic (i.e. the nozzle is not choked). The flow in the chamber accelerates as it converges toward the throat, where it reaches its maximum (subsonic) speed at the throat. The flow then decelerates through the diverging section and exhausts into the ambient as a subsonic jet.
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
Point 2 labels the nozzle throat, where M = 1 if the flow is choked. Point 3 labels the end of the nozzle where the flow transitions from isentropic to Fanno. With a high enough initial pressure, supersonic flow can be maintained through the constant area duct, similar to the desired performance of a blowdown-type supersonic wind tunnel ...
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
As an example calculation using the above equation, assume that the propellant combustion gases are: at an absolute pressure entering the nozzle of p = 7.0 MPa and exit the rocket exhaust at an absolute pressure of p e = 0.1 MPa; at an absolute temperature of T = 3500 K; with an isentropic expansion factor of γ = 1.22 and a molar mass of M ...
Hence, any convective flow, whether turbulent or not, will involve nonlinearity. An example of convective but laminar (nonturbulent) flow would be the passage of a viscous fluid (for example, oil) through a small converging nozzle. Such flows, whether exactly solvable or not, can often be thoroughly studied and understood. [25]